Температура нагрева корпуса светодиодного светильника

Содержание
  1. Проблема перегрева осветительных светодиодов и пути ее решения

    Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения. Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные. Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам. К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт. Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока — в свет. Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин. С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К. Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент. Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению. Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника. Причины выхода светодиодов из строя при их перегреве Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию. Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода. Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса. Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка. Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды. Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения. Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания. Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия. Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток. Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи). Пример термической защиты с использованием термистора Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера. В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева. Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость. Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение. Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой. Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов. Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше. Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов. Источник Греются ли светодиодные лампы Перед тем как приобрести такой источник света и установить его нужно понять греются ли светодиодные лампы? Для этого нужно немного разобраться в самой конструкции, пока ещё инновационного осветительного прибора. Все существующие светодиодные лампы состоят из: Источник светового потока — светодиод, их может быть как один, так и множество в зависимости от желаемой мощности. Такие светодиоды в лампах называют иногда чипами. Рассеиватель — служит для того, чтобы свет от светодиодов рассеивался равномерно и мягко. Изготавливается из поликарбоната и других сортов пластика. Печатной платы, на которой установлены светодиоды. Она обеспечивает эффективную передачу вырабатываемого тепла через термопасту на теплоотводящий металл (радиатор). Радиатор — часть лампы, отвечающая за отведение тепла, вырабатываемого светодиодами. Зачастую изготавливается из анодированного алюминия, реже из обычного. Конструкция радиатора имеет ребристую форму, для увеличения площади теплопередачи. Драйвер — требуется для преобразования переменного тока в постоянный и выпрямления пульсаций напряжения. Полимерное основание корпуса цоколя служит для изоляции всей от конструкции от пробоя электрическим током. Цоколь — служит для соединения токопроводящих частей светодиодной лампы с патроном. Конструкция и процесс изготовления подробно описан в видео: Температура нагрева светодиодных ламп Светодиодная лампа, как и все приборы, преобразующие электрический ток в свет, выделяют некоторое количество тепла. Источники света на светодиодной основе, греются в несколько раз меньше, если сравнивать с лампами накаливания. В светодиодной лампе не нагревается ни цоколь, ни рассеиватель. Происходит выделение тепла только на самом кристалле светодиода, и большую часть тепла выделяет драйвер. Тепловая энергия передается на радиатор и успешно рассеивается им. Как сильно нагреваются светодиодные лампы важно понимать тем, кто планирует использовать их возле горючих предметов — натяжной потолок, мебель, подсветка штор и пр. Сила нагрева зависит от мощности и логично, что менее мощный светодиод меньше греется. Реальный КПД ламп оценивается в 80%. Т.е. при мощности светодиодной лампы 10 Вт — 2 Вт уйдет исключительно на выработку тепла. Температура нагрева светодиодной ламы достигает в максимальной горячей точке всего лишь 65 °C, по сравнению с лампами накаливания, температура которых спокойно доходит до 265 °C. Так, что при вопросе в магазинах «какие лампочки не нагреваются?» — имеются в виду светодиодные. Нужно так же помнить, что в светодиодной лампе есть элементы которые греются намного сильнее. Так, конденсатор может нагреваться более 100 °C. И это его абсолютно нормальная рабочая температура. Конденсатор размещается на драйвере и укрыт корпусом, достать его без повреждения конструкции невозможно. Конденсатор — элемент на печатной плате, предназначенный для сглаживания пульсаций и мерцаний напряжения в сети. Работает в диапазоне от 85 до 260 В. В итоге можно выделить несколько факторов, от которых зависит как сильно нагреваются светодиодные лампы: Качество материалов как радиатора, так и всех компонентов; Мощность лампы; Качество сборки; Окружающая температура воздуха. Источник Показатели температурной надёжности светодиодных светильников Осторожно! Сделано в Китае Прежде всего, следует отдать должное огромному разнообразию, отличному дизайну, простоте, продуманности и низкой цене изделий промышленности Поднебесной. Большой ассортимент созданных в Китае промышленных светодиодных светильников теперь доступен на рынке СНГ. Кроме того, предлагается немало светильников местной сборки, но созданных из китайских «конструкторов». Практически вся эта продукция определяется поставщиками как крайне надежная, работающая в самых сложных климатических условиях, в широком диапазоне питающих напряжений и, зачастую, почти в астрономическом диапазоне температур. Закономерен вопрос, насколько можно доверять заявленным характеристикам и получит ли предприятие, использующее такие светильники, ожидаемую экономию? В нашей компании была проведена большая работа по разработке, изготовлению и испытаниям светильников с модульными светодиодами COB (Chip on Board – кристалл на подложке, читается КОБ). Основная задача при этом – определение температурных режимов, обеспечивающих длительную эксплуатацию в диапазоне воздействия окружающей среды, которые установлены техническими условиями. Был разработан математический аппарат расчета радиаторов охлаждения. Температуры готовых изделий замерялись контактными и бесконтактными измерителями, в том числе тепловизором Fluke. Сделаем небольшое отступление, чтобы пояснить значимость температурных режимов для работы осветительных светодиодов. На модели десятиваттного светодиодного модуля белого света (Рис. 1) показаны основные составляющие. Излучающие синий свет кристаллы размещаются на массивной, обычно медной с покрытием серебром, подложке и залиты коллоидным раствором желтого люминофора. В светильнике модуль через тонкий слой теплопроводящей пасты монтируется на радиаторе, рассеивающем тепло в окружающую среду. Рис. 1. Модель 10-ти ваттного светодиодного модуля Максимальная указываемая разработчиками неразрушающая температура функционирования кристаллов обычно не превышает 135-150 °C. Но такой нагрев приводит к деградации структуры полупроводников и постепенному снижению светового потока. Для сохранения большей части потока при длительной эксплуатации температура кристаллов должна быть много ниже. Так как непосредственное измерение температуры кристаллов затруднено, принято нормировать температуру подложки, учитывая тепловое сопротивление кристалл-подложка. Перепад температур между кристаллами и подложкой меняется в зависимости от мощности модуля, режимов охлаждения и внешних условий. В среднем перепад температур составляет примерно 20 °C. На рисунке 2 приведен график работоспособности светодиодных модулей в зависимости от рабочей температуры по данным тайваньской компании «Huey Jann Electronics Industry», специализирующейся на выпуске светодиодных модулей COB. Сохранение 70% светового потока после 50 тыс. часов эксплуатации возможно, если температура подложки составляет не более 60 °C, а температура кристаллов, соответственно, не превышает 80 °C. Каким должен быть охладитель, обеспечивающий такой режим работы? Речь, прежде всего, о пассивных радиаторах, рассеивающих тепло за счет естественной конвекции воздуха и излучения. На теплоотвод влияет много факторов. Большое значение имеет температура окружающей среды. Но также важны ориентация радиатора в пространстве, конфигурация, материал и свойства поверхности радиатора и многое другое. Все эти параметры будут рассмотрены в другой раз. Пока ограничимся оценкой размеров радиатора относительно температуры окружающей среды. Рис. 2. Зависимость работоспособности светодиодных модулей от температуры Один из часто применяемых в китайских светильниках радиаторов показан на рисунке 3. Такие охладители обычно поставляют со светодиодными модулями от 30 до 150 Вт. Высота радиатора при установке 50-ти ваттного модуля – 100 мм, площадь поверхности 3480 см 2 . Указанные размеры даются большинством изготовителей светильников и рекомендуются производителями самих радиаторов. Рис. 3. Экструдированный алюминиевый радиатор диаметром 160 мм Расчеты показывают, что на этом радиаторе при 50-ти ваттной нагрузке и температуре окружающей среды 40 °C в наиболее благоприятном случае температура подложки достигнет 100 °C. Светильник будет работать некоторое время, но быстрое уменьшение светового потока сведет на нет все преимущества светодиодного освещения. Обеспечить нормируемые 50 тыс. часов работы возможно только в условиях температуры окружающей среды не выше 10-15 °C. Очевидно, что такой режим эксплуатации неприемлем. Еще хуже обстоят дела с рассеиванием большей мощности, так как рекомендуются и поставляются радиаторы с меньшим соотношением площади поверхности на ватт отводимой мощности. Светильники с большим количеством маломощных светодиодов поверхностного монтажа здесь не рассматриваются. Их применение гораздо важнее не в промышленном, а в офисном или бытовом приложении. Можно только отметить, что хотя они имеют несколько иные характеристики, проблемы теплоотвода и эксплуатации на предельных температурах присутствуют и там, и зачастую в гораздо большей степени. Справедливости ради важно отметить, что по выкладкам компании-изготовителя осветительных светодиодов «Edison», требуемые для охлаждения площади могут быть меньше, чем при использовании светодиодных модулей. К сожалению, их расчеты слишком упрощены и не приводится подтверждающая информация из практики применения. Проблема высокой эксплуатационной температуры кристаллов светодиодов в осветительной технике не осталась незамеченной изготовителями. Предлагается довольно много иных вариантов охладителей, но практически всегда финансовая выгода преобладает над показателями надежности. Увы, предельная экономия на материалах в изделиях китайской промышленности не обошла стороной и область промышленного освещения. У потребителя остается право критически относится к предлагаемой продукции и требовать от поставщиков обоснованные характеристики того или иного светодиодного светильника. Наше предприятие при разработке элементов охлаждения исходило из требований технических условий, по которым максимальное значение температуры окружающей среды 40 °C не должно влиять на работоспособность и срок службы светильника. Рассчитанные согласно этим требованиям радиаторы для 50 Вт подводимой мощности должны иметь охлаждающую поверхность около 200 дм 2 . Это почти в шесть раз больше, чем у китайских аналогов. Меньшая площадь приводит к повышению температуры кристаллов и сокращению срока службы. В частности, на одном из опытных образцов светильника со светодиодом мощностью 50 Вт фирмы «Edison», размещенном на радиаторе площадью 90 дм2, замеры температуры показали следующую картину (Рис. 4). На рисунке указана температура в градусах Цельсия. Максимальная температура кристаллов при этом замере 89,8 °C, температура подложки 60 °C, температура окружающей среды во время измерения 22 °C. И хотя этот режим можно признать допустимым, любой рост температуры окружающего воздуха или ухудшение условий конвекции могут привести к ускоренному снижению светового потока. Рис. 4. Изображение светодиода 50 Вт, сделанное тепловизором Fluke Размер площади охлаждения 90 дм 2 был выбран на основании рекомендаций по применению тайваньской компании «Edison Opto Corporation». Для модулей 50 Вт компания предлагает использовать охладитель площадью 70-73 дм 2 . Таким образом, следует очень внимательно относиться к импортной светодиодной осветительной технике с точки зрения заявляемых параметров долговечности и условий функционирования, если от нее ожидается существенная экономия ресурсов, как в плане уменьшения энергопотребления, так и в плане длительного срока эксплуатации. Источник
  2. Греются ли светодиодные лампы
  3. Температура нагрева светодиодных ламп
  4. Показатели температурной надёжности светодиодных светильников
  5. Осторожно! Сделано в Китае
Читайте так же:  При подключении светильника замыкание

Проблема перегрева осветительных светодиодов и пути ее решения

Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения.

Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные.

Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам.

К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт.

Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока — в свет.

Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин.

С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К.

Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент.

Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению.

Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника.

Причины выхода светодиодов из строя при их перегреве

Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию.

Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода.

Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса.

Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка.

Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды.

Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения.

Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания.

Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия.

Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток.

Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи).

Пример термической защиты с использованием термистора

Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера.

В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева.

Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость.

Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение.

Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой.

Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов.

Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше.

Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов.

Источник

Греются ли светодиодные лампы

Перед тем как приобрести такой источник света и установить его нужно понять греются ли светодиодные лампы? Для этого нужно немного разобраться в самой конструкции, пока ещё инновационного осветительного прибора. Все существующие светодиодные лампы состоят из:

Источник светового потока — светодиод, их может быть как один, так и множество в зависимости от желаемой мощности. Такие светодиоды в лампах называют иногда чипами.

Рассеиватель — служит для того, чтобы свет от светодиодов рассеивался равномерно и мягко. Изготавливается из поликарбоната и других сортов пластика.

Печатной платы, на которой установлены светодиоды. Она обеспечивает эффективную передачу вырабатываемого тепла через термопасту на теплоотводящий металл (радиатор).

Радиатор — часть лампы, отвечающая за отведение тепла, вырабатываемого светодиодами. Зачастую изготавливается из анодированного алюминия, реже из обычного. Конструкция радиатора имеет ребристую форму, для увеличения площади теплопередачи.

Драйвер — требуется для преобразования переменного тока в постоянный и выпрямления пульсаций напряжения.

Полимерное основание корпуса цоколя служит для изоляции всей от конструкции от пробоя электрическим током.

Цоколь — служит для соединения токопроводящих частей светодиодной лампы с патроном.

Конструкция и процесс изготовления подробно описан в видео:

Температура нагрева светодиодных ламп

Светодиодная лампа, как и все приборы, преобразующие электрический ток в свет, выделяют некоторое количество тепла. Источники света на светодиодной основе, греются в несколько раз меньше, если сравнивать с лампами накаливания. В светодиодной лампе не нагревается ни цоколь, ни рассеиватель. Происходит выделение тепла только на самом кристалле светодиода, и большую часть тепла выделяет драйвер. Тепловая энергия передается на радиатор и успешно рассеивается им.

Как сильно нагреваются светодиодные лампы важно понимать тем, кто планирует использовать их возле горючих предметов — натяжной потолок, мебель, подсветка штор и пр. Сила нагрева зависит от мощности и логично, что менее мощный светодиод меньше греется. Реальный КПД ламп оценивается в 80%.

Т.е. при мощности светодиодной лампы 10 Вт — 2 Вт уйдет исключительно на выработку тепла. Температура нагрева светодиодной ламы достигает в максимальной горячей точке всего лишь 65 °C, по сравнению с лампами накаливания, температура которых спокойно доходит до 265 °C. Так, что при вопросе в магазинах «какие лампочки не нагреваются?» — имеются в виду светодиодные.

Нужно так же помнить, что в светодиодной лампе есть элементы которые греются намного сильнее. Так, конденсатор может нагреваться более 100 °C. И это его абсолютно нормальная рабочая температура. Конденсатор размещается на драйвере и укрыт корпусом, достать его без повреждения конструкции невозможно.

Конденсатор — элемент на печатной плате, предназначенный для сглаживания пульсаций и мерцаний напряжения в сети. Работает в диапазоне от 85 до 260 В.

В итоге можно выделить несколько факторов, от которых зависит как сильно нагреваются светодиодные лампы:

  • Качество материалов как радиатора, так и всех компонентов;
  • Мощность лампы;
  • Качество сборки;
  • Окружающая температура воздуха.

Источник

Показатели температурной надёжности светодиодных светильников

Осторожно! Сделано в Китае

Прежде всего, следует отдать должное огромному разнообразию, отличному дизайну, простоте, продуманности и низкой цене изделий промышленности Поднебесной. Большой ассортимент созданных в Китае промышленных светодиодных светильников теперь доступен на рынке СНГ. Кроме того, предлагается немало светильников местной сборки, но созданных из китайских «конструкторов». Практически вся эта продукция определяется поставщиками как крайне надежная, работающая в самых сложных климатических условиях, в широком диапазоне питающих напряжений и, зачастую, почти в астрономическом диапазоне температур.

Закономерен вопрос, насколько можно доверять заявленным характеристикам и получит ли предприятие, использующее такие светильники, ожидаемую экономию?

В нашей компании была проведена большая работа по разработке, изготовлению и испытаниям светильников с модульными светодиодами COB (Chip on Board – кристалл на подложке, читается КОБ). Основная задача при этом – определение температурных режимов, обеспечивающих длительную эксплуатацию в диапазоне воздействия окружающей среды, которые установлены техническими условиями. Был разработан математический аппарат расчета радиаторов охлаждения. Температуры готовых изделий замерялись контактными и бесконтактными измерителями, в том числе тепловизором Fluke.

Сделаем небольшое отступление, чтобы пояснить значимость температурных режимов для работы осветительных светодиодов.

На модели десятиваттного светодиодного модуля белого света (Рис. 1) показаны основные составляющие. Излучающие синий свет кристаллы размещаются на массивной, обычно медной с покрытием серебром, подложке и залиты коллоидным раствором желтого люминофора. В светильнике модуль через тонкий слой теплопроводящей пасты монтируется на радиаторе, рассеивающем тепло в окружающую среду.

Рис. 1. Модель 10-ти ваттного светодиодного модуля

Максимальная указываемая разработчиками неразрушающая температура функционирования кристаллов обычно не превышает 135-150 °C. Но такой нагрев приводит к деградации структуры полупроводников и постепенному снижению светового потока. Для сохранения большей части потока при длительной эксплуатации температура кристаллов должна быть много ниже.

Так как непосредственное измерение температуры кристаллов затруднено, принято нормировать температуру подложки, учитывая тепловое сопротивление кристалл-подложка. Перепад температур между кристаллами и подложкой меняется в зависимости от мощности модуля, режимов охлаждения и внешних условий. В среднем перепад температур составляет примерно 20 °C.

На рисунке 2 приведен график работоспособности светодиодных модулей в зависимости от рабочей температуры по данным тайваньской компании «Huey Jann Electronics Industry», специализирующейся на выпуске светодиодных модулей COB. Сохранение 70% светового потока после 50 тыс. часов эксплуатации возможно, если температура подложки составляет не более 60 °C, а температура кристаллов, соответственно, не превышает 80 °C.

Каким должен быть охладитель, обеспечивающий такой режим работы? Речь, прежде всего, о пассивных радиаторах, рассеивающих тепло за счет естественной конвекции воздуха и излучения.

На теплоотвод влияет много факторов. Большое значение имеет температура окружающей среды. Но также важны ориентация радиатора в пространстве, конфигурация, материал и свойства поверхности радиатора и многое другое. Все эти параметры будут рассмотрены в другой раз. Пока ограничимся оценкой размеров радиатора относительно температуры окружающей среды.

Рис. 2. Зависимость работоспособности светодиодных модулей от температуры

Один из часто применяемых в китайских светильниках радиаторов показан на рисунке 3. Такие охладители обычно поставляют со светодиодными модулями от 30 до 150 Вт. Высота радиатора при установке 50-ти ваттного модуля – 100 мм, площадь поверхности 3480 см 2 . Указанные размеры даются большинством изготовителей светильников и рекомендуются производителями самих радиаторов.

Рис. 3. Экструдированный алюминиевый радиатор диаметром 160 мм

Расчеты показывают, что на этом радиаторе при 50-ти ваттной нагрузке и температуре окружающей среды 40 °C в наиболее благоприятном случае температура подложки достигнет 100 °C. Светильник будет работать некоторое время, но быстрое уменьшение светового потока сведет на нет все преимущества светодиодного освещения. Обеспечить нормируемые 50 тыс. часов работы возможно только в условиях температуры окружающей среды не выше 10-15 °C. Очевидно, что такой режим эксплуатации неприемлем. Еще хуже обстоят дела с рассеиванием большей мощности, так как рекомендуются и поставляются радиаторы с меньшим соотношением площади поверхности на ватт отводимой мощности.

Светильники с большим количеством маломощных светодиодов поверхностного монтажа здесь не рассматриваются. Их применение гораздо важнее не в промышленном, а в офисном или бытовом приложении. Можно только отметить, что хотя они имеют несколько иные характеристики, проблемы теплоотвода и эксплуатации на предельных температурах присутствуют и там, и зачастую в гораздо большей степени. Справедливости ради важно отметить, что по выкладкам компании-изготовителя осветительных светодиодов «Edison», требуемые для охлаждения площади могут быть меньше, чем при использовании светодиодных модулей. К сожалению, их расчеты слишком упрощены и не приводится подтверждающая информация из практики применения.

Проблема высокой эксплуатационной температуры кристаллов светодиодов в осветительной технике не осталась незамеченной изготовителями. Предлагается довольно много иных вариантов охладителей, но практически всегда финансовая выгода преобладает над показателями надежности.

Увы, предельная экономия на материалах в изделиях китайской промышленности не обошла стороной и область промышленного освещения. У потребителя остается право критически относится к предлагаемой продукции и требовать от поставщиков обоснованные характеристики того или иного светодиодного светильника.

Наше предприятие при разработке элементов охлаждения исходило из требований технических условий, по которым максимальное значение температуры окружающей среды 40 °C не должно влиять на работоспособность и срок службы светильника.

Рассчитанные согласно этим требованиям радиаторы для 50 Вт подводимой мощности должны иметь охлаждающую поверхность около 200 дм 2 . Это почти в шесть раз больше, чем у китайских аналогов. Меньшая площадь приводит к повышению температуры кристаллов и сокращению срока службы. В частности, на одном из опытных образцов светильника со светодиодом мощностью 50 Вт фирмы «Edison», размещенном на радиаторе площадью 90 дм2, замеры температуры показали следующую картину (Рис. 4). На рисунке указана температура в градусах Цельсия. Максимальная температура кристаллов при этом замере 89,8 °C, температура подложки 60 °C, температура окружающей среды во время измерения 22 °C. И хотя этот режим можно признать допустимым, любой рост температуры окружающего воздуха или ухудшение условий конвекции могут привести к ускоренному снижению светового потока.

Рис. 4. Изображение светодиода 50 Вт, сделанное тепловизором Fluke

Размер площади охлаждения 90 дм 2 был выбран на основании рекомендаций по применению тайваньской компании «Edison Opto Corporation». Для модулей 50 Вт компания предлагает использовать охладитель площадью 70-73 дм 2 .

Таким образом, следует очень внимательно относиться к импортной светодиодной осветительной технике с точки зрения заявляемых параметров долговечности и условий функционирования, если от нее ожидается существенная экономия ресурсов, как в плане уменьшения энергопотребления, так и в плане длительного срока эксплуатации.

Источник

Оцените статью
Охраны в доме нет
Adblock
detector