Является ли источником электрического тока торшер

978. В грозу между тучами возникает молния. Является ли она электрическим током? Является ли электрическим током молния, возникшая между облаком и Землей?
Да, является. Заряди из области с большими потенциалом переходят в область с меньшим потенциалом.

979. В металлическом проводнике, с помощью которого разряжается электроскоп, возникает электрический ток. По проводнику, соединяющему полюсы гальванического элемента, тоже идет электрический ток. Есть ли разница между этими токами? В чем состоит это различие?
Разница только во времени протекания тока.

980. В мопеде от генератора тока к фаре проведен только один провод. Почему нет второго провода?
Роль второго провода играет рама мопеда.

981. На рисунке 92 изображена схема электрической цепи. Назовите элементы, из которых состоит данная электрическая цепь? Что нужно сделать, чтобы лампочка в цепи загорелась?
Ключ, лампочка, источник тока; нужно замкнуть ключ.

982. Из каких элементов состоит цепь на рисунке 93? Будет ли идти ток через сопротивление R, если ключи 1 и 2 разомкнуты? Будет ли идти ток и через какие элементы цепи, если замкнуть:
а) только ключ 1; б) только ключ 2; в) оба ключа?

Две лампы; ключ 1, ключ 2; сопротивление, источник тока. Если оба ключа разомкнуты, ток идти не будет. А) будет, резистор R и лампы 1; б) будет, резистор R т лампа 2; в) будет, через все элементы.

983. Из каких элементов состоит цепь на рисунке 94? Будет ли идти ток через лампочки, если замкнуть:
а) только ключ 1;
б) только ключ 2;
в) оба ключа одновременно?
Стоит ли в такой цепи иметь два ключа?

Две лампочки, ключ 1, ключ 2, источник тока.
А) – нет; б) – нет ; в) да , будет. Не стоит хватит одного ключа.

984. Какова цена деления шкалы вольтметра, изображенного на рисунке 95?

985. Начертите схему цепи, содержащей источник тока и две лампочки, каждую из которых можно включать отдельно.

986. В электрическую цепь включен реостат со скользящим контактом (рис. 96). Покажите стрелками, как идет ток в цепи и в реостате.

987. Через лампочку А (рис. 97) протекает в течение 5 мин 150 Кл электричества, а через лампочку В — за то же время 60 Кл. Определить силу тока в той и другой лампочке.
Какова будет сила тока в проводах D и С?

Источник

Постоянный и переменный ток в освещении

Постоянный и переменный ток в освещении

Без электричества невозможно представить современный мир. Всё, к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Но одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.

От этого зависит возможность их работы, а иногда и целостность, если подключение неправильное.

Электрический заряд или электроны движутся в одном направлении, всегда начиная с генератора, который является началом линии, и до конца линии, которая является электрическим оборудованием.

Переменный – это ток, который меняет величину и направление. Причем, в равные промежутки времени. В случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

Применение постоянного тока:

· Различные виды техники (бытовая, промышленная)

· Автономные системы (бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов, общественный транспорт: трамваи и троллейбусы)

· Электронные устройства (электрофонари, игрушки, аккумуляторные электроинструменты и др.)

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Переменный ток чаще всего используется тогда, когда присутствует необходимость его передачи на большие расстояния.

Применение переменного тока:

· Инфраструктурные и транспортные объекты

ФОТО 3

· У лампочки Ильича на постоянном токе не будет пульсаций света и шума от работы. На переменном — лампа может гудеть из-за того, что спираль работает как электромагнит, сжимаясь и растягиваясь дважды за период.

· Эти приборы нельзя включать напрямую в сеть. Для нормальной работы лампе нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

· Прибор питается от переменного напряжения 220 вольт, которое находится в бытовой сети, но токи в ней протекают разные. Можно запитать лампу и постоянным (с ограничением тока). Но предпочитают переменный. Он проще в реализации и электроды при этом изнашиваются равномерно.

· Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны: от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для него конденсатор имеет бесконечное сопротивление.

Читайте так же:  Как рассчитать ксс светильника

Для создания яркого направленного освещения используются специальные устройства – прожекторы. Они комплектуются мощными источниками света и поставляются в прочных корпусах из металла и пластика.

Предназначены для равномерного освещения крупных сооружений: домов, стадионов, сцен

Используются для подсветки и выделения светом объектов и их частей

Служат для передачи информации на расстоянии

· Дальнего действия с параболическими отражателями

Изделия выпускаются в основном для военных нужд

В прожекторах устанавливают разные лампы: галогенные, натриевые, металлогалогенные и светодиодные. Бывают модели со сменными лампами, но в некоторых заменить световой элемент не получится.

Светодиодные лампы для уличного освещения имеют различную конфигурацию. Они могут быть выполнены в форме квадрата, прямоугольника, круга, овала или линейки.

· Широкий диапазон электропитания – от 100 до 240 Вольт

Если напряжение падает, то светодиодный прожектор продолжает работать в обычном режиме.

· Работа как при переменном, так и при постоянном токе

· Определенное количество диодов

· Различный цвет света – горячий или холодный, разная температура

· Возможность смены угла светорассеивания

Чаще всего угол установки прожекторов для освещения на улице равен 50° и более.

Лампы со светодиодами обладают высоким качеством, экономным потреблением электроэнергии, надежностью и долгим сроком службы.

Прежде, чем выбрать осветительные приборы, внимательно ознакомьтесь с их описанием. И не стесняйтесь задавать вопросы специалистам!

Источник

Источники электрического тока — таблица по видам

Общие сведения

Упорядоченное движение электрических зарядов в физическом теле называют током. Значит, для того чтобы он существовал необходима какая-то сила, воздействующая на обладающие энергией элементарные частицы. Причём её действие должно быть постоянной для поддержания необходимого электротока в установленный промежуток времени. Именно для этого и используют источники электрического тока, приборы, которые умеют генерировать электричество.

Создание первого источника датируется 1800 годом, когда физик Вольт представил сообществу прибор, названный им «электродвижущий аппарат». Позже он получил официальное название «вольтов столб». Принцип работы этого устройства заключался в растворении цинковой пластины, соединённой с медным проводником. Физик придал приспособлению вертикальную форму и разместил химические вещества поочерёдно. В итоге получился как бы слоёный пирог. Между пластинами цинка и меди заливался электролит.

Полуметровый столб Вольта подключался к замкнутой цепи, причём медный вывод считался плюсовым, а цинковый минусовым. Таким образом, Вольт, не поняв действительной причины возникновения тока, практически пришёл к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую.

Несмотря на то что Вольт так и не смог понять действительную причину появления тока его прибор стал популярен среди учёных исследовавших электричество. Как выяснилось впоследствии «вольтов столб» стал прототипом гальванической батареи. В 1830 году русский учёный Петров на базе изобретения француза создал источник, выдающий 1,7 киловольта. Длина его установки составляла 12 метров, а мощность 85 ватт.

Сегодня под источником тока понимают генератор способный преобразовывать различного рода матерею в электричество, то есть создавать электромагнитное поле.

Следует отметить, что в электротехнике источники разделяют на два вида: тока и напряжения.

Отличия их в следующем:

  • генератор тока выдаёт постоянный поток электронов в независимости от напряжения и, по сути, является конденсатором с бесконечной ёмкостью;
  • источник напряжения обеспечивает постоянную разность потенциалов и похож на аккумулятор.

Но на самом деле эти различия чисто теоретические, на практике же отличия не существуют. Это связано с тем, что изготовить идеальный прибор невозможно. То есть такой, на который не влияет нагрузка приёмника, а внутреннее сопротивление нулевое.

Классификация приборов

Наиболее верным, с точки зрения науки, источнику тока даёт определение теория электрических цепей. Согласно ей под ним понимают двухполюсник, прохождение через который упорядоченных зарядов не зависит от приложенного потенциала на его выводах. В то же время в электротехнике им называют любой источник электрического поля.

Все существующие источники тока разделяют по виду преобразуемой ими энергии. Иными словами, по виду трансформируемой материи в силу, которая затем совершает работу по перемещению элементарных носителей зарядов. Существующие типы генераторов электротока можно представить таблицей:

Механические В их принципе работы используется преобразование двигательной энергии в электрическую. Трансформирование происходит в специальных устройствах — турбогенераторах. По сути, это машины, приводящиеся в работу газовым или паровым потоком. Отдельно стоит отметить гидрогенераторы — использующие преобразование энергии падающей воды.
Тепловые Электрический ток генерируется из-за возникновения разности температур при контакте металлов или полупроводников. Природные свойства заставляют носители зарядов переходить с нагретого вещества. Значение тока пропорционально разности температур. Такие устройства не могут обеспечить большую мощность, поэтому используются в качестве токовых датчиков (термопары). Хотя при этом существуют альтернативные источники, использующие распад изотопов.
Световые Разработки такого вида источников начались в конце ХХ века — солнечные батареи. В их работе используется свойство полупроводников генерировать электричество при бомбардировке их квантами света.
Химические Это большая группа генераторов тока, в основе которых применяется способность веществ при взаимодействии через электролит испускать энергию. По-другому их называют гальваническими. Например, к ним можно отнести аккумуляторы и простые батарейки.
Читайте так же:  Подсветка планки багажника киа рио 4

Вне зависимости от типа устройства они все предназначены служить генераторами тока. Поэтому в схемах и технической литературе их обозначают одинаково. Условный знак сходен конденсатору только правая обкладка рисуется длиннее и обозначает положительный вывод.

Если источник состоит из нескольких приборов, то его обозначение, и реальное подключение, выполняют последовательным соединением минуса первого устройства к плюсу второго.

Идеальный и реальный генератор

Предполагается что в идеальном устройстве сопротивление, обусловленное внутренними характеристиками, бесконечно большое. Из-за этого параметры замкнутой сети не оказывают влияния на источник. Неограниченное увеличение сопротивления внешней электросети, подключённой к идеальному прибору тока, приводит к возрастанию напряжение на его зажимах. Отсюда следует, что увеличивается мощность, которая может развиваться до неограниченной величины. Поэтому идеальный генератор тока можно рассматривать как источник бесконечной мощности.

Вольт-амперная характеристика (ВАХ) преобразователя энергии представляет собой прямую линию, параллельную координатам U. Реальных же источников ВАХ будет пересекать обе оси. Точка пересечения соответствует нулевому току и напряжению. Такой режим работы приборов называют холостым ходом.

По сути, идеальный источник — это физическая абстракция. На самом деле любой электрический прибор обладает внутренним сопротивлением. Этот параметр обратно пропорционален мощности. Эквивалентная схема реального источника состоит из двух последовательно включённых генераторов ЭДС. Напряжение на клеммах находится как сумма падения разности потенциалов на внутреннем сопротивлении r и на нагрузке: E = ΔU + U.

Таким образом, формулы описывающие источники будут следующими:

  1. Идеального: U = I * R → P = I2 * R. Так как для токового прибора сила перемещения зарядов постоянна, то напряжение и мощность неограниченно буду расти при увеличении сопротивления.
  2. Реального: U = I (R * r/ (R + r)) → P = I2 * (R / (1 + R/r)2. Прибор, имеющий внутреннее сопротивление, эквивалентен источнику ЭДС.

Некоторым подобием идеального генератора тока может считаться устройство, состоящее из аккумулятора и последовательно подсоединённого к нему большого сопротивления. Им, может быть, пентод (электронная лампа). Обладая внутри сопротивлением несоизмеримо выше, чем импеданс внешней замкнутой цепи, эти радиоэлектронные приборы могут отдавать практически не изменяющийся по величине ток.

Таким образом, эти устройства выполняют свою главную роль в генерации электрического поля независимого от разности потенциалов, появившейся во внешней цепи.

Химические источники

Пожалуй, наиболее интересными для потребителя являются химические источники тока. Они характеризуются портативными размерами и работают на принципе прохождения окислительно-восстановительных реакций. Один из выводов принято называть анодом (плюс), а другой катодом (минус). На первом происходит окисление вещества, а на втором восстановлении. Пространство между электродами заполнено электролитом — диссоциатором раствора.

Сегодня производство может предложить несколько видов химических генераторов постоянного тока. Основные из них можно перечислить в таблице:

Тип Напряжение на выводах, В Ёмкость, мАч Градиент температур, °С
Солевый 1,5 1000 — 1100 -20 — 60
Щелочной 1,5 2400 — 2500 -30 — 60
Литий-тионилхлоридный 3,3 — 3,6 2000 — 2100 -55 — 85
Литий-диоксидмарганцевый 3 1500 — 1600 -20 — 85
Литий-диоксидсерный 2,6 — 2,9 800 — 900 -55 — 70

Анод таких источников изготавливают из лития, обладающего высоким отрицательным потенциалом по сравнению с другими проводниками. Такие источники обеспечивают питание нагрузки довольно продолжительное время. Самые лучший из них литий-тионилхлоридный элемент (Li/SOCl2).

Химические источники имеют ряд характеристик:

  1. Напряжение без подключения нагрузки.
  2. Ёмкость — величина, зависящая от выработки тока относящейся к единице объёма.
  3. Мощность.
  4. Ток саморазряда.

Потери ёмкости бывают вызваны не только подключением нагрузки, но и химическими реакциями, происходящим в спокойном состоянии элемента. Из-за небольшой мощности такие источники не используют в качестве тяговых. Для этой цели применяют никель-кадмиевые и никель-железные элементы. В них катод изготавливают из NiOOH, а анод из смеси кадмия с железом. В процессе заряда-разряда электролит в аккумуляторе не испаряется. Протекающую реакцию можно описать так: 2 Ni (OOH) + Cd + 2 Н2О = 2 Ni (OH)2 + Cd (OH)2.

Щелочными аккумуляторами называется устройство работающее на никель-кадмиевых и никель-металгидридных соединениях. В нём используется гидроксид калия. Но самыми популярными остаются свинцовые, в которых серная кислота является электролитом.

В сообщениях на тему об источниках электрического тока часто упоминают так называемую сахарную батарею. Работает она на сахарозе, и при разложении образует одну только воду. Какова её ёмкость неизвестно, так как прототип ещё находится на стадии разработки.

Источник

Оцените статью
Охраны в доме нет
Adblock
detector