Схема светодиодной подсветки в чайнике

КАК УСТРОЕНА ПОДСВЕТКА ЧАЙНИКА

Электрический чайник с подсветкой агрегат не редкий и не такой загадочный 🙂 но всё таки Как устроена его красивая подсветка , радующая нас в темноте волшебным Булькающим светом. Неужели там стоят «голубые неонки» или навороченный блок питания со стабилизацией и светодиодами ?

Как оказалось — Вовсе нет! Там простая и доступная для самоделкиных схема, которую не раз оспаривали, критиковали и возмущались, но все равно делали . всего лишь две детали Диод и Резистор позволяют работать светодиодной подсветке в кипящих чайниках и, при этом, стабильно и надежно. Даже в самых дорогих моделях за несколько тысяч, стоит и работает, точно такая же схема подсветки сделанная по линейной схеме делителя напряжения. Тут есть схема https://youtu.be/uoOq0SF4apU включения подобная фабричной. А в этих роликах я слегка пошутил над скептиками и сомневающимися

😂 Как подключить светодиод к 220 В с помощью Мандарина.

😂 Как включть Светодиод в розетку 220 вольт с помощью Овощей

И, хотя , я думаю, что даже после этого видео найдутся скептики утверждающие в невозможности нормальной работы такой схемы, —
Всё таки Она Светится!

Источник

Схема светодиодной подсветки чайника. Индикатор состояния электрочайника

Приобретая любую электротехнику, никогда не угадаешь срок её эксплуатации. Электрочайник – один из бытовых приборов, который используется в хозяйстве по максимуму и рано или поздно может произойти его поломка. Но важно быть во всеоружии и при обнаружении поломки не бежать в магазин за новым прибором, а попробовать самостоятельно выявить причину и при возможности её устранить – это реально. А как именно безопасно и легко устранить поломку электрочайника, будет рассказано далее.

Ремонт электрочайников – довольно простая процедура, с которой можно справиться своими руками. При ремонте чайника очень важно знать методы поиска поломки и способы безопасного ремонта. Зачастую поломки у всех чайников одинаковые: либо он не греет воду или же просто не включается.

Так как множество чайников сейчас импортируется из Китая, то долговечность их работы оставляет желать лучшего. Реже происходят поломки у чайников Bosch.

Ремонт электрических чайников иногда может стать очень увлекательным занятием. К примеру: если ручка с крышкой цельные и присоединить их отдельно вне чайника не выходит, потому что болты, на которые это всё крепится, приклеены возле края дверцы. Даже многие опытные мастера думают, как Китайцы это всё собирали?

Схема поиска причины поломки в электрочайниках:

  1. Перед тем как починить устройство, нужно исследовать механизм его работы. Производителей электрочайников, очень много, но все они собираются по одному принципу: через розетку в чайник контактная группа (термостат, находящийся в спиральном основании чайника) с помощью, которой греется вода – передает напряжение.
  2. Обязательно, перед тем как разобрать устройство необходимо убедится, что оно отсоединено от подачи электричества.
  3. Необходимо проверить целостность контактов возле нагревающей спирали чайника.
  4. Причиной поломки чайника может стать его закипание с открытой крышкой, в результате чего пластина, в которой установлен нагревательный элемент не прогибается и повреждает сильно нагретый ТЭН. В результате такой поломки термостат придется заменить.
  5. Чтобы отремонтировать чайник Тефаль, который не включается, необходимо очистить нагревательный элемент (который скрыт за дисковым элементом) от накипи специальным средством для её удаления.
  6. Если кнопка чайника не работает, то такое может означать поломку термостата или резистора (5w12kj), который отвечает за работу нагревательных схем.
  7. Когда электрочайник перестает греть, необходимо освободить его от воды, потом перевернуть его, предварительно отключив от электричества и включить выключатель на подставке, который представлен кнопкой.

При обрыве контактов, соединяющих термостат с электрической вилкой, их необходимо соединить и заклеить изолирующей лентой.

Делаем ремонт электрочайника своими руками

Принцип работы электрочайника заключается в электронагревательном элементе. Биметаллическая пластина отвечает за выход пара, который нагревает воду и автоматически отключается при закипании воды в чайнике. Но что же делать, если чайник сломался? Раньше поломка чайника вызывала множество проблем, но в современное время устранить эту проблему не составит труда.

Если новый чайник протекает, необязательно менять его на новый. Можно подождать несколько недель пока на его дне образуется накипь, которая замажет все трещины внутри. Если чайник сильно потек, то необходимо обратится в сервисный центр.

Основные правила по устранению неполадок чайника своими руками:

  1. Если электрочайник течет, причиной может стать брак корпуса. Чтобы устранить течь воды из чайника можно применить специальный герметик и клей для заклеивания микротрещин.
  2. Случается, и так, что чайник еще не закипел, но лампочка уже выключилась. Для этого не обязательно знать, как устроен принцип работы, а всего лишь очистить его от накипи. Такая проблема зачастую встречается в чайниках Scarlett и Polaris, а в чайниках Braun и Maxwell есть система само очистки и фильтрации.
  3. Если не горит лампочка чайника, то необходимо сделать очистку контактов внутри чайника, которые могли окислиться.
  4. Если не работает чайник его необходимо напрямую подключить к сети и убедится в том, что исправна розетка.
  5. Электросхема чайника довольно проста и схожа с схемой работы утюга. В чайнике не много деталей, которые могут сломаться. При поломке в первую очередь необходимо заняться нагревателем, который обычно меняют на новый.

Если чайник не греет, то необходимо искать прямую причину поломки в неисправных контактах.

Устройство схемы электрочайника, как и в любом нагревательном элементе довольно простое. Любой электрочайник имеет нагревательный элемент и термовыключатель – это основные рабочие механизмы. Электрический ток поступает в нагревательный элемент, и от спирали тепло передается в ТЭН, вода нагревается, и чайник автоматически выключается.

Очень важно наливать в чайник воду не выше максимальной отметки иначе при кипении она будет разливаться, и не ниже минимальной иначе закипев ТЭН, может выйти из строя и придется его поменять. Чайники Браун и Бош обладают уникальной системой защиты от таких повреждений.

  1. Основной элемент электрочайника – это ТЭН, отвечающий за нагревающую способность чайника, находится он под металлической пластиной чайника. Если этот элемент перестал греть, его следует заменить.
  2. Внутри ТЭНа находится сетевая спираль, которая нагревается и подает тепло. Почему спираль подает тепло в ТЭН? За счет электрического сопротивления. Её замена при поломке также не составит труда.
  3. Кнопка включения чайника наполнена светодиодами и закрывается пластмассой. Разборка ручки чайника в случае поломки может занять длительное время.
  4. В некоторых чайниках есть выключатель, который регулируется с помощью таймера.
  5. Для подключения чайника к сети используется группа контактов, находящаяся на дне подставки и переходящая в электрическую вилку.
  6. Крышка чайника отвечает за блокирование горячей воды.

Термореле или датчик нагрева температуры, отвечающий за её нагрев до определенного градуса – тоже могут стать причиной поломки.

Устройство электрочайника

Кажется, что изучение устройства электрочайника занимает много времени, и устранение его неисправности в домашних условиях невозможно, и теперь чайник придется сдавать по гарантии, но на самом деле это не так. Причину поломки можно выявить и самостоятельно. Для начала необходимо проверить включена ли вилка в сеть. Если это сработало, и вода не закипает, нужно отключить чайник от электричества и осмотреть терморегулятор в подставке снизу на наличие накипи.

Накипь легко очистить с помощью кипячения в чайнике раствора лимонной кислоты. Если сгорел ТЭН, его следует заменить.

Какие действия должны быть, если чайник подтекает? Тут вариантов может быть несколько: либо ждать определенное время 2-3 недели, до образования на нем накипи, замазать образовавшиеся микротрещины специализированным герметиком и клеем, либо обратится в сервисный центр и заменить устройство. Часто бывает так, что не работает кнопка включения чайника, возможно, сломался её светящийся элемент.

Частые причины поломок электрочайников Скарлет, Saturn, Tefal, Vitek:

  • Поломка может заключаться в окислении контактов, которые находятся в ручке;
  • Окисление контактов, которые находятся в реле;
  • Повреждение провода в электрическом шнуре, контакты необходимо оголить и заново соединить;
  • Повреждение контактов у основания самой электрической вилки;
  • Не рабочая кнопка включения.

Прогресс бежит вперед и сейчас большой популярностью стали пользоваться беспроводные чайники, но и они могут быть неисправны, хотя и произвели списания проводных электрических чайников из многих домов.

Беспроводной чайник Витек и причины его поломок:

  • Повреждение контактов;
  • Поломка выключателя;
  • Поломка тепло нагревателя или спирали;
  • Выход ТЭНа из строя;
  • Сгоревшие контакты в кнопке включения (в данном случае лучше заменить кнопку на новую);
  • Выход из строя тепло предохранителя.

Пошаговый: ремонт электрочайника своими руками (видео)

Чайник – незаменимая бытовая техника в обиходе каждого дома, ведь как приятно просыпаться по утрам с ароматной чашечкой кофе. И как портит настроение, если вдруг наш помощник по дому – электрочайник, внезапно перестал греть воду, но благодаря элементарной схеме устройства электрочайника, ремонт можно произвести самостоятельно и без всяких проблем насладится вкусом бодрящего напитка. Делать самостоятельно, либо обращаться в сервис – решать только вам.

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от , который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные ) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Читайте так же:  A4tech bloody g521 как отключить подсветку

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Бытовая электротехника широко используется во всем мире и одним из наиболее распространенных электроприборов является электрочайник . Несмотря на надежность многих моделей и производителей, срок службы электрических чайников, как и других электроприборов, ограничен, поэтому чайники, рано или поздно, ломаются. И в таком случае необязательно сдавать чайник в ремонт или приобретать новый – можно осуществить ремонт электрочайника своими руками. В данной статье мы будем рассматривать с нашими читателями, как можно отремонтировать наиболее распространенные поломки в электрочайниках.

Принцип работы электрочайника

Прежде чем браться за ремонт любого электроприбора, необходимо разобраться в его принципе работы – данное правило относится и к чайнику. По электрической схеме легко понять принцип работы данного электроприбора. Отметим, что по нижеприведенному принципу действия работают практически все модели.

Принцип работы выглядит следующим образом: после соединения вилки с источником питания, ток проходит через провод на контакты подставки, на которую устанавливаются все чайники при подогреве воды.

В основании самого чайника имеются специальные контакты, которые соединяются вместе с контактами, расположенными на подставке – таким образом происходит замыкание цепи и разогрев нагревательного элемента. После этого электричество проходит через термовыключатель – устройство, которое позволяет чайнику выключаться при достижении определенной температуры (как правило, температуры кипения). Также в стандартной цепи есть и выключатель тепловой защиты, который включен постоянно и задействуется только в том случае, если пользователь включил пустой чайник. С обозначенных выключателей электричество проходит непосредственно на электронагревательных элемент (который также называют ТЭН).

Мы рассмотрели основной принцип работы электрочайника – теперь рассмотрим в отдельности работу некоторых его цепей и участков.

Электросхема узлов

Внимательно рассмотрите подставку для чайника и место её контакта с самим чайником. Внутри круглых канавок можно обнаружить электрический контакт, находящийся на небольшой пружине. Именно через этот контакт напряжение из общей сети подается на сам электрочайник. В центре подставки есть еще один контакт, который при соприкосновении с электрочайником заземляет его корпус. По сути, данный контакт не играет никакой роли и предназначен только для того, чтобы защитить пользователя в случае нарушения целостности изоляции.

Шнур питания, который подходит к подставке электрочайника, внутри данной подставки разветвляется на три провода, к которым подведены клеммы. Один провод предназначен для заземления, два других контакта подходят к концентрическим медным кольцам, которые используются для передачи электричества с подставки на сам электрочайник. Далее электричество с медных колец поступает непосредственно к ТЭНу, который установлен в основании корпуса чайника. В результате замыкания цепи происходит разогревание воды.

Защита от перегрева

ТЭНы обладают высокой мощностью и сильно разогреваются в процессе работы, поэтому в каждом электрочайнике дополнительно устанавливается специальная система защиты. Основа работы данной системы – биметаллические пластины, которые при разогревании до определенной температуры разгибаются и размыкают цепь, тем самым предотвращая дальнейший перегрев чайника.

Автоматическое отключение

Практически во всех современных электрочайниках имеется специальная система, предусматривающая отключение нагревательного элемента от напряжения при достижении водой температуры кипения. Принцип работы такого автомата прост – пар при нагревании по специальному каналу подводится к биметаллической пластине, которая в свою очередь соединена с выключателем. При закипании чайника и при повышенной интенсивности давления пара биметаллическая пластина разогревается и надавливает на рычаг выключателя, тем самым отключая электрочайник от сети.

Как производить ремонт чайника?

Мы рассмотрели основные технические особенности, а теперь рассмотрим, как отремонтировать электрочайник. Для удобства читателей, рассмотрим конкретные примеры, которые чаще всего возникают с чайниками различных фирм (Тефаль, Филипс и т.д.):

  1. Чайник перестал греть воду . В данном случае неисправность очень легкая – произошел обрыв участка на самом ТЭНе или же отсутствует контакт некоторых клемм с выводами на ТЭНе. Восстанавливается соединение очень легко – для этого необходимо разобрать чайник и определить место отхода контактов. При определении места отсутствия контакта необходимо с помощью пассатижей восстановить соединение клеммы с выводами на ТЭНе.
  2. Чайник перестал нагревать воду и индикатор не показывает, что чайник включен . В первую очередь проверяем напряжение в сети. При наличии такового, причина заключается в плохом контакте токоприемников в основании корпуса электрочайника и подставкой. В данном случае необходимо проверить, как держатся подпружиненные контакты, о которых мы говорили выше. Для этого разбирается подставка и достается кольцо с подходящим контактом. Необходимо проверить, насколько плотно они зафиксированы – как правило, они со временем разбалтываются и необходимо их попросту затянуть потуже для того, чтобы электричество проходило через контакты.
  3. Не работает выключатель или защита от перегрева . При рассмотрении вопроса о том, как отремонтировать электрочайник, чаще всего на практике сталкиваются с неработающим выключателем. Он может быть сломанным из-за износа пластиковых деталей, ржавчины на поверхности биметаллической пластины. Для проверки состояния необходимо извлечь выключатель из корпуса и проверить целостность деталей. После этого необходимо осмотреть состояние пластин. Если на них есть сильный налет от пара или ржавчина, её необходимо удалить и еще раз проверить работу выключателя. Данные меры принимаются и в том случае, если перестала работать защита от перегрева (другими словами, чайник перестал выключаться) – необходимо проверить состояние биметаллических пластин и, при необходимости, очистить их.
  4. Чайник протекает . В данном случае необходимо проверить целостность корпуса чайника и посмотреть, с какого именно места идет течь. Как правило, при наличии сильной течи речь о ремонте чайника может не вестись, особенно если его корпус сделан из низкокачественного пластика или внутренняя поверхность сильно пострадала в результате повреждений.

Случай, когда после длительного ожидания включенный электрический чайник так и не закипел, привел к мысли, что неплохо бы обеспечить визуальный контроль исправности его нагревательного элемента. Дело в том, что встроенный индикатор включения (например, неоновая лампа с гасящим резистором) присоединен параллельно нагревательному элементу и показывает лишь наличие напряжения 220 В на его выводах. Даже если элемент неисправен, сигнальная лампа все равно будет светить, показывая, что чайник включен. В результате было разработано простое устройство, решающее поставленную задачу. Его схема изображена на рисунке выше. Элементы чайника (сетевая вилка ХР1, выключатель SA1 и нагревательный элемент ЕК1) обведены штрихпунктирной линией.

Когда нагреватель исправен, вилка вставлена в розетку, но выключатель разомкнут, ток течет по цепи:
контакт L вилки ХР1,
диод VD1,
резистор R1,
«зеленый» кристалл светодиода HL1,
резисторы R2-R4, нагреватель ЕК1,
контакт N вилки ХР1.
Зеленое свечение светодиода свидетельствует об исправности нагревателя. Потребляемая от сети мощность в этом режиме не превышает 3 Вт.

Читайте так же:  Shg5504c 101h mp3398a уменьшить ток подсветки

После замыкания выключателя SA1 ток через «зеленый» кристалл светодиода прекращается, так как цепь его протекания теперь зашунтирована выключателем. Ток течет: от контакта N вилки ХР1 через диод VD2, резистор R5, «красный» кристалл светодиода HL1, резисторы R2-R4 и замкнутый выключатель SA1 к контакту L сетевой вилки. Зеленый цвет свечения светодиода сменяется красным. Через резистор R6 и диод VD3 заряжается конденсатор С1, напряжение с него поступает в цепь питания музыкального синтезатора DA1.

В типовом варианте включения синтезаторов серии УМС (вывод 13 соединен с плюсом питания, это самый экономичный режим) мелодия начинает звучать сразу после подачи напряжения питания. Но это лишь первая из имеющихся в памяти микросхемы мелодий, и повторяется она до выключения питания. Соединив вывод 4 с общим проводом, можно включить вторую по списку мелодию, но синтезатор тоже станет повторять ее до выключения питания.

Если вывод 13 с плюсом питания не соединен, для начала воспроизведения необходимо подать на него импульс высокого уровня длительностью 0,1. 0,5 с. При слишком коротком пусковом импульсе прозвучит лишь маленький фрагмент мелодии (пять-шесть нот), а при его достаточной длительности она будет проиграна полностью. Поскольку вывод 12 соединен с общим проводом, по окончании мелодии синтезатор выключится. Подробнее о работе музыкальных синтезаторов можно прочитать в статье В. Дриневского и Т. Сироткиной «Музыкальные синтезаторы серии УМС» («Радио», 1998, № 10, с. 85, 86).

Описанное выше свойство синтезатора использовано для того, чтобы музыкально подтвердить подключение чайника к сети 220 В и избежать прослушивания одной и той же мелодии до закипания в нем воды и автоматического отключения. Пусковой импульс формирует цепь R7R8C2. Подбирая резистор R6, устанавливают напряжение питания микросхемы DA1 равным 1,5 В. Диод VD3 препятствует разрядке конденсатора С1 через цепь питания светодиода HL1.

Сигнализатор смонтирован на нижней крышке корпуса чайника навесным способом. Резисторы R2-R4 теплоизолированы асбестовой тканью. Микросхема синтезатора приклеена к крышке выводами вверх. К ним, как к монтажным стойкам, припаяны остальные резисторы, диод VD3, конденсаторы и кварцевый резонатор. Пьезоизлучатель НА1 также приклеен к крышке, под ним в ней просверлены несколько отверстий диаметром 1,2 мм для прохода звука.

Светодиод HL1 установлен на место имевшегося в чайнике ранее индикатора включения. Если таковой конструкцией не предусмотрен, светодиод удобнее всего разместить в ручке чайника так, чтобы его свечение было хорошо видно. Он может быть не только указанного на схеме типа, но и другим двухцветным с общими катодами кристаллов, например КИПД41А1-М. В крайнем случае можно применить два обычных светодиода разного цвета свечения, подключив их согласно схеме. Заменив светодиоды, придется уточнить номиналы резисторов R1 и R5, добиваясь достаточной яркости свечения светодиодов при минимальном энергопотреблении.

Вместо трех двухваттных резисторов R2-R4 допустимо установить один сопротивлением 7,5 кОм и мощностью не менее 5 Вт, например, проволочный ПЭВ-5. Конденсаторы С1 и С2 лучше взять импортные с допустимой рабочей температурой 105 °С. Пьезоизлучатель ЗП-3 с успехом заменят аналогичные приборы, которые можно найти, например, в «озвученных» детских игрушках. Заменой диодов КД105Б в рассматриваемом сигнализаторе могут послужить любые другие выпрямительные с допустимым обратным напряжением не менее 350 В.

В качестве музыкального синтезатора DA1 подойдут микросхемы серий УМС8, УМС9, УМС10. Следует только учитывать, что в синтезаторах УМС8-06 и УМС10-56 записана одна длинная последовательность музыкальных фрагментов без пауз. Автор использовал синтезатор УМС8-01, в котором на втором месте записана мелодия песни «Бьется в тесной печурке огонь. «.

Электрочайники – термосы, или термопоты, исправно служат 2 – 3 года, затем обычно выходят из строя. Основные причины этого: перестают кипятить воду, не наливают кипяток и из-за протекания воды. В Интернете много материалов о ремонте термопотов, но почти нет схем. В статье кратко описаны модели термопотов, схемы которых срисованы с изделий, с неисправностями которых автор сталкивался при ремонте. В статье приведены примеры схемных решений, применённых в большинстве моделей современных термопотов, несмотря на большое количество клонов, выпускаемых различными фирмами..

На приведённых схемах обозначения большинства деталей соответствуют указанным на платах. У разных моделей термопотов схемы вторичного электропитания и блоков управления сильно отличаются. Все термопоты имеют емкость для кипячения воды из нержавеющей стали. В её нижней части закреплены термоэлектронагреватели, ТЭН-ы, обычно их два, для кипячения и подогрева воды, в этом случае они находятся в одном блоке, который имеет три вывода. На дне емкости закреплен термовыключатель на температуру 88 – 96 град.С или термодатчик, подающие сигнал для отключения ТЭН-а кипятильника при достижении нужной температуры воды. На боковой стенке емкости закреплены включённые последовательно термовыключатель на температуру 102 – 110 град.С и предохранитель FU на 125 град.С/10А, помещённый в силиконовую трубку. Они отключают электропитание термопота при повышении температуры емкости для кипячения из-за отсутствии воды или в случае короткого замыкания. Для подачи горячей воды в термопотах используют однотипные электродвигатели постоянного тока на напряжение 12 В, с центробежным насосом.

Большинство деталей термопотов размещено на двух платах. Плата управления, на которой расположены кнопки управления и светодиоды находится в верхней части корпуса. Основная плата, на которой находятся большинство силовых разъёмов, блоки управления, реле, источники и стабилизаторы вторичного напряжения находится в нижней части корпуса под ёмкостью для кипячения воды. Обе платы соединяются между собой жгутами проводов с разъёмами.

Схема термопота Elenberg ТН-6030, приведена на Рис. 1. Ранее, в 2014 году автор выкладывал её на сайте go-radio, поэтому дана ссылка на этот сайт. Схема ТН-6030 достаточно простая и полностью аналоговая. Постоянно через ТЭН подогрева воды ЕК1 и диод VD9 течёт пульсирующий ток только в одном направлении, поэтому сопротивление этого ТЭН-а в два раза меньше, чем аналогичного, той же мощности ТЭН-а подогрева в других моделях, где он питается переменным током. При включении электромотора, через него и диод VD10 начинает течь постоянный пульсирующий ток другой полярности, до 150 мА, а через ТЭН ЕК1 идёт переменный ток. Автоматическое включение и выключение ТЭН-а кипячения воды ЕК2, производится термовыключателем SF1. Принудительное включение ТЭН-а ЕК2 длительностью до 2-х минут производится контактами К1.1 реле К1. На транзисторы VT1 – VT2 каскада управления реле К1 постоянное напряжение 14 В, стабилизированное цепочкой R3 и VD6, подаётся с диодного моста VD1 – VD4. Частой неисправностью этой модели термопота является выгорание контактов термовыключателя SF1, потому что через него проходит весь ток ТЭН-а ЕК2. Заменить термовыключатель не сложно, надо отвернут два винта на фланце, и переставить два силовых разъёма. Подробные видеозаписи этой замены есть в Интернете.

Другая неисправность, плохая работы насоса подачи горячей воды. Её причина – увеличение трения оси ротора электромотора, работающего при повышенной температуре из-за ухудшения качества смазки. Магнитная муфта сцепления насоса состоит из магнитного диска, надетого на вал ротора электромотора и крыльчатки насоса, надетую на полуось в крышке корпуса насоса. В основании крыльчатки также закреплён магнитный диск. Между двумя магнитными дисками установлена герметичная прокладка. Рис. 2.

Автор смазывал точки опоры ротора на торцах корпуса электромотора обычным веретенным маслом. Помогало на пару месяцев. Трудно добраться до передней точки опоры, приходилось разбирать насос и заливать масло под магнитный диск, и проворачивать его пальцем, в этот момент электромотор находится в вертикальном положении, чтобы масло затекло в нужное место. Остатки масла сливают через край. Снимать диск с оси ротора не надо, пара съёмов и он не будет держаться на оси ротора. Проще сразу заменить двигатель с насосом.

Протечки воды в термопотах возникают редко, обычно вследствие механических повреждений. Однажды причиной появления воды под чайником оказалась малозаметная трещина в верхней части пластмассового корпуса, под крышкой, проходящая вдоль закраины ёмкости для кипячения воды. В эту щель проникал пар, который затем конденсировался на внутренней поверхности стенок корпуса, пластик вдоль трещины крошился. Тот чайник ремонту не подлежал.

Схема термопота Vitek VT-1188 показана на рис. 3. В этой модели вторичное напряжение 12 — 14 В на блоки управления подаётся с трансформатора Т1, установленного внизу корпуса под ёмкостью для воды, и с выпрямительного моста VD1 – VD4. Напряжение 5 В со стабилизатора ic2 поступает для питания процессора ic1, который управляет всей работой термопота. По команде оптопары ic3 процессор ic1 должен сигнализировать о срабатывании защиты, SF1 или FU1, хотя, непонятно как — зуммер в этой модели не установлен. На дне ёмкости для кипячения установлен термодатчик RT из двух соединённых параллельно термисторов MF58 отрицательным ТКС в корпусах КД-3. Температуру отключения кипятильника устанавливается вручную кнопкой sw2. Термопоты VT-1188 и VT-1187 не имеют ТЭН-а для подогрева воды, из-за чего включение и выключение ТЭН-а для кипячения, ЕК1 происходит чаще, чем в других моделях. Поэтому у VT-1188 чаще сгорают контакты реле и перегорает ТЭН. Случай выгорания крепёжного вывода реле на плате описан в . При возникновении всех этих неисправностей у чайника нормально работают индикация, двигатель насоса, нет только кипячения воды. При пригорании и залипании контактов реле, или пробое транзистора Q1, может не отключаться режим кипячения. При ремонте этих поломок неисправные детали заменяют.

Фотография основной платы VT-1188. Рис. 4.

Схема термопота VT-1191 показана на Рис. 5. Источник вторичного напряжения для блоков управления импульсный, сделан на микросхеме VIPer 12A по бестрансформаторной схеме. Постоянное напряжение 18 В на его выходе фильтруется конденсаторами EL3, C3 и дросселем L2, затем понижается стабилитроном ZD2 до 12 В. Схема управления работает на процессоре ic1, маркировки на его корпусе нет, имеется только этикетка с указанием модели термопота. Напряжение 5 В на ic1 подается со стабилизатора на транзисторе Q4 и стабилитроне ZD3. В термопоте VT-1191 имеется два ТЭН-а: ЕК1 для кипячения и ЕК2 для подогрева воды. Контакты К1,1 реле К1 поочерёдно подключают выводы одного из них к сети в зависимости от напряжения на выводе №5 ic1, которое через разъём CN1, светодиод HL2 и R7 поступает на базу транзистора Q1. Через термовыключатель SF2 протекает небольшой базовый ток транзистора Q2, поэтому SF2 соединён с платой, и выводом № 4 ic1 слаботочным разъёмом. Электромотор включается транзистором Q3 при появлении «+» на выводе №3 ic1. Неисправность термопота проявлялась в том, что он не кипятил и не наливал воду, горел только зелёный индикатор HL3. Причиной поломки был выход из строя процессора ic1.

Рис.6 Фотография основной платы VT-1191, закреплённой в корпусе термопота.

Советов по ремонту термопотов дано уже много, но я добавлю ещё два:

1) Фотографировать весь процесс разборки и ремонта чайника. Это потом облегчит его последующую сборку и особенно, установку силовых разъёмов. (Рис. 6).

2) Если корпуса слаботочных разъёмов, установленных на платах, даже незначительно шатаются на своих местах, эти корпуса надо приклеить к плате и пропаять контакты. Нарушение контактов разъёмов после ремонта и сборки термопота может привести к появлению новых неисправностей.

  • «Ремонт реле электрочайника Vitek VT-1188»
  • Журнал «Радио» 2016-8-35.

Источник

Оцените статью
Охраны в доме нет
Adblock
detector