Проверка ламп ccfl подсветки с помощью электронного балласта

Схема тестера ламп подсветки мониторов

Вы находитесь здесь: Схемы радиоаппаратуры Любительские схемы Измерительные приборы Тестер CCFL

Тестер CCFL

Как-то раз попался мне на глаза блок подсветки фотопленки от неисправного сканера. Назывался он Epson EU-52 Film Adapter:

Внутри его оказалась простая схема, питающая лампу с холодным катодом (английское сокращение — CCFL) длиной 12 см:

Моментально возникла мысль сделать на базе этой схемы устройство для проверки ламп подсветки мониторов. Ведь во многих мониторах тоже стоят CCFL, только большей длины.

Когда ремонтируешь монитор, не всегда понятно, почему отключается подсветка — то ли лампа какая-то неисправна, то ли инвертор. Тестер позволит автономно проверить лампы и ускорить ремонт.

В общем, итоговая схема приняла вот такой вид:

Устройство дает на выходе 2 кВ (на холостом ходу) с частотой 40 кГц и позволяет измерить напряжение и ток через лампу. В качестве измерительного прибора взят индикатор уровня записи от какого-то старого магнитофона с током полного отклонения 160 мкА. Резисторы на 10,7 МОм и 1,8 МОм подобраны так, чтобы при 2 кВ стрелка отклонялась на всю шкалу (2000 В : 0,16 мА = 12500 кОм). Падением напряжения на диодах моста пренебрегаем. Подстроечник на 15 кОм регулируется так, чтобы в режиме измерения тока максимум был равен 10 мА. Шкалу я не градуировал, качество лампы можно оценить и без этого, просто по отклонению стрелки.

Подстроечником на 1,5 кОм устанавливается такое напряжение питания, чтобы на холостом ходу стрелка отклонялась на всю шкалу, это и будет около 2 кВ на выходе.

Индикатор со своим мостом и переключатель должны быть помещены в заземленный экран, иначе из-за наводок высокого напряжения на индикатор невозможно добиться нулевых показаний тока без лампы.

Недостаток этой схемы — отсутствие защиты от короткого замыкания на выходе. Я поленился ее делать, рассчитывая на свою аккуратность.

Так выглядит готовое устройство:

Практика показала, что хорошие лампы от мониторов с диагональю 15-19″ потребляют 7-10 мА при напряжении 1-1,5 кВ. Если ток значительно меньше, лампа севшая, ее надо менять. Если при нормальном токе лампа светит розоватым цветом, а не белым, она скоро откажет, ее тоже надо менять.

Источник

Проверка ламп ccfl подсветки с помощью электронного балласта

Когда то мне понадобилось проверить лампы CCFL в подсветки монитора .Был собран из чего было вот этот тестер буквально за час.

Он работает верой и правдой по сей день. Работой его вполне доволен.Но что то хотелось по миниатюрнее. И на алли был заказан вот такой тестер.

В описании были описаны его параметры . Что подходит для проверки : от 3 до 55 дюймовых ламп CCFL в том числе и жк телевизора. Что и подкупило.

В итоге он был успешно куплен и испытан и конечно разобран на предмет чего там в нутре у него..И небольшой фотосет.

Платка с обратной стороны.

Фото микроконтроллера HS108P-J взятое с сети.

Схему нарисовал сам полчаса трудов..

Теперь о работе этого чуда . Продиагностировал кучу ламп ,результат в общем не однозначный , мониторовские зажигает хорошо, а телевизионные большие только край лампы. Вывод, нужен более мощный тестер.

Источник

ДИАГНОСТИКА И РЕМОНТ ИНВЕРТОРА ЖК МОНИТОРА ИЛИ ТВ

В настоящее время, практически в каждой квартире есть персональные компьютеры, системные блоки, либо ноутбуки. Ноутбуки это отдельная непростая тема, за ними нужен регулярный квалифицированный уход, профилактика, своевременная замена термопасты, смазывание силиконовой смазкой кулеров, иначе со временем происходит отвал чипсета на материнской плате ноутбука.

Материнская плата ноутбука

С системными блоками все обстоит намного проще, там условия для охлаждения полупроводниковых радиодеталей, не любящих длительного перегрева, намного лучше. Но вместе с системными блоками, для вывода визуальной информации используются ЖК и LED мониторы. Если с последними, LED мониторами, проблем обычно не бывает, так как в них нет ни инверторов, ни CCFL ламп подсветки матрицы, напоминающих по внешнему виду обычные люминесцентные лампы. То с ЖК мониторами после 6-7 лет эксплуатации часто возникают проблемы.

Электронный балласт от энергосберегайки

Которые, кстати, CCFL лампы подсветки домашние умельцы и проверяют, подключив к электронному балласту обычных энергосберегающих ламп, которые и являются ничем другим, как обычными люминесцентными лампами со стеклянной колбой скрученной в спираль и встроенным в цоколь лампы, маломощным электронным балластом. Для работы CCFL ламп требуется высокое напряжение, которое мы получаем с помощью повышающих трансформаторов, установленных в инверторе монитора.

Часто число трансформаторов бывает равно числу ламп, но бывают и варианты трансформаторов с удвоенным количеством обмоток, сразу на две лампы. Что чаще всего ломается в инверторах ЖК мониторов?

Первое. Это думаю что любимые всеми мастерами за легкость произведения ремонта – электролитические конденсаторы в фильтре линии 13 вольт блока питания. Кстати, в этой линии бывают установлены электролитические конденсаторы с рабочим напряжением не 16 вольт, как могли бы подумать начинающие мастера, так как рабочее напряжение электролитических конденсаторов должно превышать напряжение питания в цепях, в которых они стоят. Нет, там установлены конденсаторы на 25 вольт, а в ЖК телевизорах и мониторах, большей диагонали, бывает что стоят конденсаторы и на 35 вольт в связи с тем, что рабочее напряжение там не 13 вольт, а выше. Так вот, почему же все же конденсаторы бывают установлены на 25 вольт, а не на 16 В?

Дело в том, что когда инвертор работает в нештатном режиме, выходные цепи блока питания по 13 вольтам бывают не нагружены, на выходе присутствует напряжение порядка 18 вольт, а под нагрузкой, когда инвертор работает в штатном режиме, оно проседает до штатных 13 вольт. Кстати, если у вас на нерабочем ЖК мониторе с одинаковой периодичностью мигает светодиод, это уже признак того, что с платой управления ЖК монитора, скалером, скорее всего все нормально, раз индикация ошибки есть, а проблемы уже по цепям инвертора.

Читайте так же:  Не работает подсветка джи шок

Если же нет вообще никакой реакции на нажатие кнопки включения, нужно проверять цепи питания 5 вольт, в частности электролитические конденсаторы на плате блока питания, на 10 вольт. На разъеме блока питания соединенным шлейфом со скалером, помимо 5 вольт необходимых для работы скалера присутствуют и 13 вольт. Иногда с платы блока питания, на скалер, приходят дополнительно еще и 3.3 вольта с маломощного SMD стабилизатора. Все эти напряжения на разъеме можно узнать предварительно определив его распиновку по надписям, шелкографии нанесенной на плате, либо скачав Сервис мануал (Service manual) на данный монитор.

Разъем питания блока питания монитора

Будьте аккуратны измеряя напряжение на разъеме включенного монитора, лучше всего взять обычные булавки, зажать их (если конечно такие есть у вас в наличии) в щупы для мультиметра, с зажимами крокодилами на концах. Таким образом, воткнув булавки в контакты обжатого провода, шлейфа на разъеме, у вас будет возможность провести измерения на разъеме питания и ничего не закоротить при этом на плате. Итак, вы померяли, видите что одно какое-то напряжение, например 13 вольт, у вас отсутствует. О чем это может говорить?

Измеряем напряжение мультиметром

Возможно у вас КЗ, короткое замыкание по цепям 13 вольт. Убедиться в отсутствии этого можно коснувшись щупами мультиметра, в режиме звуковой прозвонки, разумеется, при снятом напряжении с монитора, выключении его из розетки, на разъеме питания, контактах, подписанных + 13V и GND. Если у вас сопротивление при измерении близко к нулю или даже десятки Ом – это означает что сборки мосфетов в инверторе, полевых транзисторов, их еще называют “ключики”, пробиты, причем скорее всего накоротко, вход питания 13 вольт на землю.

Три платы от монитора скалер блок питания и инвертор

Но даже если при измерении мы не выявили на разъеме питания 13 вольт короткого замыкания, нам все равно нужно обязательно прозвонить сборки мосфетов ключей. Данные сборки имеют в своем составе два транзистора, p и n канальные, выходы которых бывают соединены накоротко на плате. Это обычно выводы сборок идущих чаще всего в корпусе SO-8, под номерами 5,6,7,8. Истоки транзисторов, а это обычно ноги 1 и 3, бывают запараллелены между собой у обоих сборок мосфетов.

Как же в таком случае определить, которая из сборок мосфетов пробита, ведь параллельно подключенные пробитые выводы одной сборки будут шунтировать своим низким сопротивлением выводы второй сборки? Если очень хочется выявить какая из сборок сгорела, можно выпаять специальные проволочки на плате, перемычки, и распараллелить выводы сборок. Но обычно это бывает не нужно. Почему? – сейчас объясню.

Дело в том, что когда меняются мосфеты, верхнее плечо или нижнее, иначе говоря мосфет, имеющий соединение либо с землей, либо с плюсом питания, особенно если по схемотехнике применяется многофазное питание, мосфеты или сборки мосфетов следует менять СТРОГО на оригинал или в крайнем случае на абсолютно полный аналог. Если нет желания подолгу копаться в даташитах, сравнивая параметры аналогов и рискуя, что аналог все же не подойдет и впоследствии выгорит, следует менять, в случае с инверторами мониторов, сразу обе сборки мосфетов, обязательно на одинаковые.

Клик на схему для увеличения

А так как найти оригинал примененной детали, в наших радиомагазинах проблематично, зато есть хорошо зарекомендовавший себя, относительно недорогой, распространенный аналог, по цене всего 45 рублей, IRF7389, я так всегда и поступаю, меняю сразу обе сборки, оба ключика. И вот мы приблизились к самому интересному. Как можно в домашних условиях поменять эти восьминожки в SMD корпусе ? Без опыта, если вы меняете их впервые, есть риск получить оторванные тонкие дороги на плате.

Стоки транзисторов, обычно бывают с одной стороны микросхемы, нашей сборки, они бывают соединены между собой, и даже если вы и оторвали контакт на плате, никто не мешает вам хорошенько промазав плату, и оставшиеся контакты флюсом, залить их расплавленным припоем.

Это даже рекомендуется, так как чем больше вы зальете выводы припоем, тем меньше будет греться плата, дорожки, от плохого контакта и т. д. и т. п. А токи там, на выходе, немаленькие. Итак, как же мы можем демонтировать микросхему?

Первое. Если есть в наличие паяльный фен, эта процедура проводится легко и просто. Наносим сплав Розе или Вуда, последний предпочтительнее, так как имеет по сравнению со сплавом Розе более низкую температуру плавления, меньше 100 градусов.

Мы откусили бокорезами кусочек от капельки припоя Вуда, кладем ее на контакты микросхемы. Капелька должна быть не маленькая и не очень большая. Мы расплавляем ее с помощью паяльника и распределяем по контактам так, чтобы все выводы, по обоим сторонам, у нас были замкнуты этим припоем. Разумеется, предварительно обильно наносим флюс на все контакты. Я, давно имея в наличии флюc RMA-223, по привычке пользуюсь только спирто-канифольным флюсом приготовленным самостоятельно – качество пайки выше всяких похвал.

И удаляется с платы с помощью 646 растворителя после пайки легко и быстро, грязи практически не остается и плата сохнет моментально, в связи с высокой летучестью растворителя. Никакой коррозии контактов и тому подобных проблем замечено в дальнейшем не было. Не покупайте готовый спирто-канифольный флюс в радиомагазинах, всегда изготавливайте его сами. Был негативный опыт покупки такого флюса, в котором канифоль была разведена производителем вместо спирта какой-то гадостью, которую даже 646 растворитель не брал, так и пришлось после перепаивания конденсаторов на материнской плате отдать, краснея, липкую плату знакомому торговцу компьютерным железом, он у меня так и стоит сейчас полный тюбик.

Читайте так же:  Mps1530 mp3398a уменьшить ток подсветки

Итак, мы нанесли и распределили сплав Вуда по всем контактам, затем греем микросхему феном на средней температуре, постоянно аккуратно покачивая микросхему из стороны в сторону. Для чего мы делаем это? Дело в том, что производителю, по каким-то непонятным для нас причинам, недостаточно того что микросхема припаянная практически намертво сидит на плате, и он при производстве электроники на поточных линиях наносит под корпус микросхемы одну, а в особо тяжелых случаях, даже две капельки клея.

Удаление припоя с помощью демонтажной оплетки

И до тех пор, пока этот клей не размягчится от температуры при пайке, вы не сможете снять микросхему с платы инвертора.

Второй метод, которым я пользуюсь при произведении ремонтов вне дома, в отсутствие доступа к паяльному фену. Точно так-же наносим сплав Вуда на контакты микросхемы и взявшись пинцетом за микросхему с двух сторон, где у нее отсутствуют контакты, пинцет обязательно должен быть с насечками на губках, чтоб не соскальзывал при демонтаже.

Мы попеременно греем жалом паяльника контакты микросхемы, с обоих сторон, быстро меняя стороны. Паяльник должен быть отечественный, ЭПСН мощностью 65 ватт. Использовать при такой температуре паяльник с керамическим нагревателем и необгораемым жалом думаю никому не придет в голову, так как перегрев жала там чреват тем, что оно потемнеет и к нему просто перестанет прилипать припой.

Если есть возможность немного снизить температуру паяльника мощностью 65 ватт с помощью диммера – хорошо, нет – попытайтесь так. Паяльника мощностью 40 ватт недостаточно для демонтажа подобным способом. Такой способ годится только в случае если вы не собираетесь повторно впаивать куда-либо выпаянную микросхему. Так как в связи с высокой температурой жала паяльника, микросхема, скорее всего, будет уже на выброс. Но при полном отсутствии доступа к паяльному фену, как показывает практика, это вполне рабочий вариант.

Единственное, если у вас при прогреве платы в течение 30 секунд не получилось выпаять подобным способом микросхему, ОБЯЗАТЕЛЬНО сделайте перерыв на 2 минуты, дайте плате остыть, иначе очень высока вероятность, что текстолит у вас вздыбится, и тонкие дороги придется “бросать” МГТФом навесом, к контактам на плате, или выводам элементов, соединенными этой дорожкой. А если к этим дорогам, были припаяны SMD элементы, то вам придется еще и пропаивать все, после произошедшего.

Спирто канифольный флюс фото

После трех четырех раз, демонтирования подобным способом, эта процедура будет проходить легко и быстро. Итак, мы демонтировали микросхему, первым или вторым способом, без разницы. Теперь нам нужно выровнять контактные площадки на плате, от возникших бугорков припоя. Для этого мы берем паяльник мощностью 25-40 ватт, демонтажную оплетку, и опять наносим на контакты обильно спирто-канифольный флюс.

Кончик оплетки, для лучшей впитываемости, можно даже обмакнуть во флюс. После удаления “соплей” с платы, мы получаем готовые площадки для монтажа новой микросхемы. Монтаж можно осуществить двумя способами. Наносим, совсем по чуть – чуть, обычного свинцово-содержащего припоя ПОС-61, на контакты на плате, но так, чтобы площадки оставались прямыми. Такой припой имеет более низкую температуру плавления, по сравнению с тем припоем, бессвинцовым, который использовал производитель электроники.

Затем мы кладем нашу микросхему на плату, устанавливаем ее так чтобы контакты точно соответствовали ножкам. Можно промазать и сами ножки микросхемы спирто-канифольным флюсом. Тогда она запаяется моментально и на низкой температуре фена. Саму температуру, выставляйте среднюю на паяльном фене, поток воздуха также умеренный, иначе микросхему сдует, она может припаяться чуть криво, и придется демонтировать ее, и впаивать по новой.

Второй способ монтажа микросхемы, производится без паяльного фена, с помощью обычного паяльника мощностью 25 ватт, с тонким остро заточенным жалом. Также, как и было выше написано, наносим флюс, и легким касанием, набрав совсем немного припоя, на жало паяльника, касаемся двух ножек микросхемы, и контактов на плате, расположенных по диагонали. Тем самым, мы прихватываем микросхему, и она у нас уже, никуда не денется.

Затем спокойно пропаиваем таким же образом все оставшиеся ножки. На соединенные на плате между собой ноги микросхемы 5-8 наносим побольше припоя для того, чтобы снизить нагрев платы в этом месте. Затем прозваниваем, на всякий случай, мультиметром в режиме звуковой прозвонки соседние контакты на замыкание относительно друг друга, либо смотрим под хорошей 10-20 кратной лупой с той же целью на контакты.

И потом смываем всю образовавшуюся грязь и следы флюса 646 растворителем, либо специальным средством для отмывания плат FluxOff, даем плате подсохнуть, убеждаемся в том, что замыкание пропало, собираем монитор, включаем и наслаждаемся его работой.

В заключение

Кто нибудь, не имеющий опыта в подобных ремонтах, скажет – все слишком сложно, я наверное не справлюсь. На самом деле подобный ремонт можно произвести намного быстрее чем я потратил сейчас время на написание этой статьи, описание всех нюансов ремонта. А как показывает практика, в условиях кризиса люди, обладающие подобными знаниями, становятся еще более востребованы и помимо полученной экономии, в случае выполнения самостоятельного ремонта домашней техники, всегда могут получить дополнительную подработку выполнив ремонт электроники на стороне – всем своим знакомым. Желаем удачных ремонтов! AKV.

Источник

Оцените статью
Охраны в доме нет
Adblock
detector