Флуоресцентный или люминесцентный светильник разница

Люминесцентные методы анализа

Поиск по этому блогу

Основное отличие — флуоресценция против люминесценции

Основное отличие — флуоресценция против люминесценции

Флуоресценция и люминесценция описывают процессы, в которых материалы испускают фотоны без излучения, вызванного теплом. Основное различие между флуоресценцией и люминесценцией состоит в том, что люминесценция описывает любой процесс, в котором фотоны испускаются без тепла, являющегося причиной , тогда как флуоресценция, по сути, представляет собой тип люминесценции, когда фотон изначально поглощается, что приводит к тому, что атом находится в возбужденном состоянии. синглетное состояние . Когда электрон возвращается в основное состояние, испускается фотон с более низкой энергией.

Что такое свечение

Люминесценция относится к излучению света от материалов, которое не вызвано теплом. Вещество, которое светится при повышении температуры (например, полоса металлов, раскаленных докрасна), следовательно, не проявляет свечения.

Свет излучается, когда электрон в возбужденном состоянии «падает» в основное состояние. Когда этот процесс происходит, испускается фотон, несущий количество энергии, равное энергетическому зазору между состояниями. Энергия, которую несет фотон, определяет его длину волны: если длина волны находится в видимой области электромагнитного спектра, тогда виден «свет».

Хемилюминесценция — это тип свечения, когда свет испускается вследствие химической реакции. Во время хемолюминесценции химическая реакция производит атомы с электронами в возбужденных состояниях. Свет испускается, когда они падают в основное состояние. Например, люминол — это химическое вещество, которое подвергается химической реакции с образованием молекулы с электронами в возбужденном состоянии. Железо, присутствующее в гемоглобине в крови, может служить катализатором этой реакции. Поэтому на места преступления часто распыляют люминол, чтобы увидеть, не было ли следов крови. Если кровь присутствовала, образуется синеватый оттенок, который можно увидеть в темноте в течение нескольких секунд.

Люминол (в смеси с перекисью водорода) может давать отличительное свечение в темноте, когда присутствует гемоглобин

Люциферин — это химическое вещество, присутствующее в светлячках, которое при окислении производит свечение. Точно так же свечение в медузах произведено составом aequorin .

Электролюминесценция — это другой тип люминесценции, который возникает, когда электроны, которые ускоряются сильными электрическими полями, сталкиваются с материалом и вызывают ионизацию материала (как в случае газоразрядных трубок), или когда электроны и дырки рекомбинируют в полупроводниковом материале.,

Что такое флуоресценция

Флуоресценция сама по себе является типом свечения, называемым фотолюминесценцией . Здесь электроны сначала возбуждаются внешним фотоном. Возбужденный электрон может иметь такой же спин, как и на уровне земли, или противоположный спин. Когда спины всех электронов в системе оказываются парными, говорят, что система находится в синглетном состоянии. Когда существует набор электронов с неспаренными спинами, говорят, что система находится в триплетном состоянии.

Возбужденный электрон может затем вернуться на уровень земли, испуская фотон. Когда электрон находится в возбужденном триплетном состоянии, если он излучает фотон, чтобы вернуться в основное состояние, этот процесс называется фосфоресценцией . Когда электрон находится в возбужденном синглетном состоянии, когда он излучает фотон, чтобы вернуться на уровень земли, процесс называется флуоресценцией. По сравнению с фосфоресценцией, электроны проводят во флюоресценции гораздо более короткое время в своих возбужденных состояниях.

Процесс флуоресценции происходит в несколько этапов. Во-первых, возбужденный электрон падает в состояние с более низкой вибрационной энергией в процессе, называемом релаксацией . Затем фотон испускается, когда электрон попадает в основное состояние. После эмиссии фотона электрон снова подвергается релаксации, чтобы упасть до самого низкого уровня энергии колебаний в основном состоянии.

Обратите внимание, что в процессе релаксации электроны теряют энергию, но фотоны не испускаются. Следовательно, фотоны, испускаемые во время флуоресценции, несут меньше энергии по сравнению с поглощенным фотоном. В результате спектр излучения материала, подвергающегося флуоресценции, смещается в сторону больших длин волн по сравнению со спектром поглощения. Этот сдвиг в длинах волн называется стоксовским сдвигом.

В люминесцентных лампах ультрафиолетовые волны сначала возникают при пропускании электрического тока через газ. Ультрафиолетовые лучи затем вызывают флуоресценцию в покрытии, нанесенном на внутреннюю часть лампочки.

Люминесцентные лампы загораются из-за эффектов флуоресценции

Разница между флуоресценцией и люминесценцией

Механизм

Люминесценция относится к любому механизму, где генерируются фотоны, без ввода тепла.

Читайте так же:  Deepcool matrexx 55 v3 add rgb 3f как подключить подсветку

Флуоресценция относится к определенному типу люминесценции, где энергия для производства фотона происходит от поглощения фотона с более высокой энергией. Возбужденное синглетное состояние создается на промежуточных стадиях.

Временные рамки

В процессе люминесценции , как правило, фотон может испускаться после в любой момент. Время жизни электрона в возбужденном состоянии может варьироваться от процесса к процессу.

При флуоресценции время жизни возбужденного состояния очень мало. Следовательно, фотоны испускаются из атомов вскоре после поглощения падающих фотонов.

Источник

Флуоресцентные лампы (люминесцентные). Виды и устройство. Работа

В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.

Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.

Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.

Типы флуоресцентных ламп и их устройство

У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.

Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:

  • Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
  • Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
  • Лампы специального назначения.

Также флуоресцентные лампы делятся по другим признакам:

  • Мощность энергии потребления.
  • Световой поток.
  • Цветовая температура.
  • Индекс цветопередачи.
  • Длина лампы.
  • Размер цоколя.
  • Вид подключения.
  • Размещение пускателя. Размещается в корпусе лампы или в светильнике.

Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение. Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.

Принцип действия

При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.

Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.

Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.

Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.

Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.

Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.

Особенности и преимущества флуоресцентных ламп

Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.

Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.

Читайте так же:  Светодиодный светильник для неотапливаемых помещений

При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.

Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.

Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.

Достоинства

Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампами накаливания.

  • Повышенная эффективность. Световая отдача выше в 10 раз, чем у ламп накаливания, КПД 25% по сравнению с лампами накаливания – 7%.
  • Большой срок работы – до 20000 часов.
Недостатки
  • Требуется подключение балласта для нормальной работы лампы.
  • Устойчивая работа лампы зависит от температуры воздуха.

Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное. Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света. Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.

Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.

Как изготавливают флуоресцентные лампы

Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.

Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.

Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.

Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.

Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.

Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.

Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.

Каждый образец лампы ставят на испытательное колесо для проверки качества.

После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.

Источник

Оцените статью
Охраны в доме нет
Adblock
detector